Step of Proof: fseg_select
11,40
postcript
pdf
Inference at
*
2
1
1
1
I
of proof for Lemma
fseg
select
:
.....assertion..... NILNIL
1.
T
: Type
2.
l1
:
T
List
3.
l2
:
T
List
4. ||
l1
||
||
l2
||
5.
i
:
. (
i
< ||
l1
||)
(
l1
[
i
] =
l2
[((||
l2
|| - ||
l1
||)+
i
)])
l1
= nth_tl(||
l2
|| - ||
l1
||;
l2
)
latex
by ((BLemma `list_extensionality`)
CollapseTHEN (Auto
))
latex
C
1
:
C1:
||
l1
|| = ||nth_tl(||
l2
|| - ||
l1
||;
l2
)||
C
2
:
C2:
6.
i
:
C2:
7.
i
< ||
l1
||
C2:
l1
[
i
] = nth_tl(||
l2
|| - ||
l1
||;
l2
)[
i
]
C
.
Definitions
nth_tl(
n
;
as
)
,
l
[
i
]
,
n
+
m
,
n
-
m
,
A
,
False
,
P
Q
,
||
as
||
,
,
a
<
b
,
S
T
,
|
g
|
,
,
{
x
:
A
|
B
(
x
)}
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
A
B
,
type
List
,
Type
,
,
t
T
,
s
=
t
Lemmas
list
extensionality
,
nth
tl
wf
,
nat
wf
origin